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The evolution of a small but finite three-dimensional disturbance on a flat uniform 
vortex sheet is analysed on the basis of a Lagrangian representation of the motion. 
The sheet at time t is expanded in a double periodic Fourier series: R(11,12,t) = 

(11,  &,O) + En,, A , ,  exp[i(nAl + 6rn12)], where 11 and 22 are Lagrangian parameters 
in the streamwise and spanwise directions, respectively, and 6 is the aspect ratio 
of the periodic domain of the disturbance. By generalizing Moore's analysis for 
two-dimensional motion to three dimensions, we derive evolution equations for the 
Fourier coefficients An,,. The behaviour of A , ,  is investigated by both numerical 
integration of a set of truncated equations and a leading-order asymptotic analysis 
valid at large t. Both the numerical integration and the asymptotic analysis show that 
a singularity appears at a finite time t ,  = O(1nc-') where c is the amplitude of the 
initial disturbance. The singularity is such that An,o = O(t;') behaves like n-5/2,  while 
An,kl = O(ct,)  behaves like n-3/2 for large n. The evolution of Ao,,(spanwise mode) 
is also studied by an asymptotic analysis valid at large t. The analysis shows that a 
singularity appears at a finite time t = O(e-') and the singularity is characterized by 
A0,2k oc k-5/2 for large k. 

1. Introduction 
In many flows, vorticity is often confined to very thin surface-like regions. A 

vortex sheet is a basic model representing such a region and can be defined formally 
as a surface or interface across which the tangential component of the velocity 
field is discontinuous. It is well known that such an interface suffers an instability 
(Kelvin-Helmholtz instability) to streamwise disturbances, and the growth rate for an 
infinitesimal disturbance is inversely proportional to its streamwise wavelength (see 
e.g. Batchelor 1967). This instability causes the vortex sheet to roll up into various 
fascinating forms, but the analysis of such a roll-up process is known to be difficult 
particularly because of the strong nonlinearity of the self-induced motion of vortex 
sheet. 

Regarding the two-dimensional motion of a vortex sheet, intensive studies have 
been made since the pioneering numerical study by Rosenhead (1931) (see Krasny 
1990 and the references cited therein). However, most real flows are three-dimensional, 
and the dynamics in three dimensions is fundamentally different from that in two 
dimensions, particularly because of the existence of a vortex stretching mechanism 
t Present address: Department of Mathematics, Faculty of Science, Toyama University, Gofuku, 

Toyama 930, Japan. 
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in three dimensions. In contrast to two-dimensional motion, very few studies have 
so far been made on three-dimensional motion, and little is known about the role of 
three-dimensionality or vortex stretching in the evolution of a vortex sheet. Recently a 
simple Lagrangian representation of the motion of a vortex sheet in three-dimensional 
flow has been derived by Caflisch (1989) and Kaneda (1990). The primary purpose of 
the present paper is to study analytically the nature of the three-dimensional motion 
of a vortex sheet on the basis of that representation. 

Since our study on the three-dimensional motion of a vortex sheet is closely related 
to that on the two-dimensional one by Damms (unpublished; see Moore 1979) and 
Moore (1979), we briefly review their studies as a preliminary to studying the three- 
dimensional motion. In two-dimensional flow, a vortex sheet can be represented as a 
curve in the complex plane: 

z(1, t )  = x(1, t )  + iy(1, t) ,  

where t is time and 1 is a non-dimensional parameter. The motion of the vortex sheet 
is described by the Birkhoff-Rott equation (Birkhoff 1962; Rott 1956) 

at 

where the asterisk denotes the complex conjugate and the symbol p.v. the principal 
value of the integral. The function y ( 1 )  represents the circulation per unit 1. It is 
invariant along particle paths, and may be therefore regarded as a Lagrangian marker 
variable. 

Damms (unpublished; see Moore 1979) studied the evolution of a vortex sheet 
subject to the initial condition 

z(1, 0)  = 1 + ic sin A, y ( 1 )  = 1, 

where c << 1. She expanded z(1, t )  in a Fourier series as 

n=-w 

Substituting (1.2) into (1.1) yields a set of ordinary differential equations for the 
coefficients An(t), where each equation includes an infinite number of interactions 
among the Fourier modes. By assuming IAn(t)l = O(elnl) and discarding terms of 
O(c15), she derived a set of truncated equations and integrated numerically the 
equations. She showed that at a critical time t, = O(ln(c-')), the Fourier coefficient An 
decays with n at an algebraic rate np for large n, where the exponent p is about -2.5. 
This implies that the interface is smooth but the curvature diverges for some 1. The 
singularity characterized by p = -2.5 is, therefore, called two-dimensional curvature 
singularity. 

In his analytical study, Moore (1979) used the following expansion of A,: 

(1.3) An(t) = c' nl A,  (0) ( t ) + 'InI+2Ai2)(t) + . . . , 

and divided the whole set of equations into simpler subsets for A;'), The 
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equation for A',O)(n > 0)  is 

where 

) -  
sum with respect to nl ,  . * .  , nK, 
satisfying 
n l + n 2 + " * + n K  = n ,  nl,n2,...,nK 2 1 

Equation (1.4) is linear in A;') and involves only A!') satisfying 1 < s < n. By analysing 
(1.4), he derived the following asymptotic expression for large n and t :  

enAio)(t) - ( 2 ~ ) - ' / ~ ( 1 +  i)t-'n-5/2 exp[n(l+ i t  + ~nbet)]. 

This implies that at time t, defined by 

1 + it ,  + In;et, = 0, (1.5) 

the nth Fourier coefficient decays with n like n-5/2, instead of exponentially, and 
the analyticity of the sheet shape is therefore lost. These results are consistent with 
Damms'. 

Meiron, Baker & Orszag (1982) examined the evolution of a vortex sheet subject 
to the initial condition 

z(1,O) = 1, y ( 1 )  = 1 + t.COS1, 
by using a Taylor series expansion in time. They also found that the sheet develops 
a singularity at t NN t,, in agreement with Moore (1979). Krasny (1986) studied the 
evolution of a vortex sheet subject to 

z(1,O) = 1 + (1 - i)esin1, y ( 1 )  = 1. 
He applied the point vortex approximation to the Birkhoff-Rott equation and nu- 
merically followed the motion of the vortex sheet. He also obtained evidence for 
the appearance of a singularity in the shape of the vortex sheet. Shelley (1992) 
re-examined the same initial value problem as in Meiron et al. (1982) by applying 
a spectrally accurate approximation to the Birkhoff-Rott integral. He also obtained 
results consistent with Moore (1979) and also showed that for finite amplitude initial 
disturbance and near the singularity time, the form of singularity may depart away 
from the one predicted by Moore (1979). 

It is seen from the derivation of Moore (1979) that his asymptotic analysis is 
verified only for the case of small but finite disturbance. However, as shown in 
Meiron et al. (1982), Krasny (1986) and Shelley (1992), his simple analysis gives a 
fairly good prediction of the appearance time as well as the form and the location of 
a singularity even for the case of finite disturbance. For two dimensions, knowledge 
of singularity formation in the shape of a vortex sheet plays an important role in 
understanding the intrinsic nature of a vortex sheet. 

In this paper, as a first step to understanding the nature of the three-dimensional 
motion of a vortex sheet, we extend the above numerical and analytical studies by 
Damrns and Moore, respectively, to three-dimensional motion on the basis of a 
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Lagrangian representation of the three-dimensional motion of a vortex sheet. Let the 
initial shape of a vortex sheet be given by 

(1.6) 

where 6 = a/b is the aspect ratio with a and b being the streamwise and the spanwise 
wavelength of the initial disturbance, respectively. The flow is two-dimensional if 
€2 = 0, as assumed by Damms and Moore. If el = 0, the vortex sheet is flat but each 
vortex line is distorted on the flat sheet. In order to make the problem analytically 
tractable, we confine ourselves to the case of small but finite €2, and assume 

R(A1,hO) = (A1,122,0) + (€2 sin&,O,el sinAl), 

0 < €1 << 1 and €2 = O(e1). (1.7) 

In spite of the smallness of the disturbance, the analysis still retains some of the 
genuine three-dimensional and nonlinear nature of the vortex sheet evolution. 

As a straightforward generalization of (1.2) to three dimensions, the vortex sheet 
at time t is represented in a Fourier series as 

~ ( 1 1 ,  ~ 2 ,  t )  (11,~2,0) + C A n , m ( t )  exp[i(n~i +  am^. 
n,m 

The equations governing the evolution of A , , ( t )  will be derived in 92. A truncation 
method used by Damms (see Moore 1979) is applied to the set of equations governing 
{ A n J t ) } ,  and the truncated set thus obtained is integrated numerically in $3. The nu- 
merical solutions suggest that, at a critical time t, = O(lnt.,'), the Fourier coefficients 
Aho and A,+1 decay with n algebraically for large n. 

The truncated set of equations presented in 93 is intractably nonlinear, and incon- 
venient for analytical derivation of the asymptotic nature of the Fourier coefficient 
for large n and m. It is therefore interesting to derive a simpler set. Such a set can be 
obtained by expanding each Fourier coefficient in powers of €1 and €2 and retaining 
only the leading-order terms in the expansion, which is an extension of (1.3) to three 
dimensions. A brief report on an asymptotic analysis on the basis of this expansion 
has been made by Ishihara & Kaneda (1994). It was shown that at a finite time 
t ,  = O(lne,'), the Fourier coefficient An,O behaves like n-2.5 for large n, while 
behaves like  TI-^,^. In 94 we present the above analysis in a complete form and derive 
analytically the leading-order asymptotic form of A,+1 for the case of small 6 .  For 
A,,o, the form will be seen to be equivalent to that obtained by Moore (1979). In 
$5, we study the evolution of the spanwise mode Ao,, on the basis of the simpler set 
derived in 94. Discussion and conclusions are presented in $6. We also consider in 
$6 the sheet shape near the singularity time and present a few interpretations of the 
results obtained in $4. 

2. Basic equations 

unit density that obeys 
Let us consider an infinitely thin vortex sheet in an ideal incompressible fluid of 

au 
- at + ( U ' V ) U  = -vp, 

v . u  = 0, (2.2) 
where u and p are the velocity and the pressure of the fluid, respectively. If the vorticity 
is confined to the vortex sheet, then there exists a velocity potential 4 = 4 ( r , t )  such 
that u = VC#I outside the sheet, where r denotes the position vector. Let the position 
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vector Y of a point on the vortex sheet S at time t be represented by two parameters 
A1 and 22 as 

and let @(Al,  22, t )  be the jump of the velocity potential across S at time t defined by 
r(t)  = w1, 1 2 ,  t ) ,  

where 
N 8R aR 

$‘(r,t) = lim& q t ) ,  n = --, N = __ x --. 
E’O IN1 an, an2 

Then, the motion of S is given by 

aR(n1’n2’t) = V[R(A1,A2,t)], 
at (2.3) 

where 

X = r - R(&, A;, t ) ,  

a@(nl, 1 2 ,  t )  W&, 1 2 ,  t )  - a y n , ,  1 2 ,  t) Wll, 1 2 ,  t )  

an1 822 312 811 
W ( 4 ,  12,  t )  = 9 

and the vector UH represents the contribution from the irrotational flow field. The 
fluid density is continuous across the sheet under consideration, and @ is therefore 
shown to be time-independent under the dynamics given by (2.1) and (2.2) (Caflisch 
1989; Kaneda 1990). When there is a density discontinuity across the interface, @ 
may be time-dependent as in the case studied by Baker, Meiron, & Orszag (1984). 

If the parameters 11 and 22 are so chosen that W is parallel to aR/ah* at t = 0, 
then a @ / a A 2  = 0, i.e. d @ / a i l  is a function of only 11. Then we may write W as 

The vorticity density f2 on the sheet is given by 

52(1,, 12, t )  = n x (V++ - v$-) 

and is related to the vorticity o as 

f2 = odn, J 
where f 2 - n  = 0, n is the distance along the sheet normal n. When W is given by (2.4), 
we call the line given by 21 =constant a vortex line. This vortex line is parallel to 0, 
and the strength y(A1) is a Lagrangian invariant and constant along the vortex line. 

In equation (2.3), the vortex stretching may be represented in terms of W .  Consider 
a small parallelepiped with two opposite faces which lie on either side of the vortex 
sheet and which are parallel to the vortex sheet. Suppose that the two faces are 
a sufficiently small distance h apart at t = 0 and have area corresponding to the 
increments A11 and Ad2 in the Lagrangian coordinates. Then the volume of the small 
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parallelepiped at t = 0 is given by 
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From the incompressibility condition (2.2), AV is a constant along the particle path. 
Let ii, be the averaged value of the vorticity defined by 

ii, = $Jwdn. (2.8) 

Then it can be shown from (2.5)-(2.8) that 

and the variation of W therefore reflects vortex stretching. 

on each side of which the velocity is uniform and given by 
Now let us consider a flat and uniform infinite vortex sheet lying in the (x, y)-plane, 

The sheet may be represented parametrically as 

where yo and U are constants and related to the circulation function r as dT = 
Udx = yodll, and 11 and jl2 are dimensionless parameters in the streamwise (x) and 
spanwise (y) directions, respectively. 

Suppose that vortex sheet (2.9) is slightly deformed initially both in the streamwise 
and spanwise directions as 

(2.10) ) I  €2 sin[271(12 + W2)/bI 

€1 sin[2411 + w1)/aI 
R(A1,12,0)= g [ (5) + ( 0 

where a and b are the streamwise and the spanwise wavelength of the initial distur- 
bance, respectively, and y1 and y 2  can be set to be zero without loss of generality. 

Introducing non-dimensional variables defined by A1 = (a/2a)&, A2 = (a/2a)22, 
t = (ayo/2aU2)?, and 

a70 A A 

R(21,12, t )  = j - & W l , J 2 ,  ), 

we may write (2.3) in the following dimensionless form: 

(2.11) 

where 8 = X/(ay0/2aU), 
assumed UH = 0. Similarly (2.10) with y1 = 1p2 = 0 may be written as 

= W/(ay,2/2aU) = d&&,&?)/d%, and we have 

(2.12) 
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where g 1  = el/(a/27c), 22 = cz/(a/27r), and 6 is the aspect ratio a/b of the periodic 
domain of the initial disturbance. Hereafter, we shall omit the hats for simplicity. 

Since (2.11) is compatible with the periodicity of R - (4,A2,0) in i l l  and ,I2, we 
may expand R(Al,&,t)  in a Fourier series as 

(2.13) 

in which 

An,m(t) (2:) Yn,m(t) 

Since initial condition (2.12) satisfies the antisymmetry R(-A1, -12) = -R(A1, ,I2) and 
equation (2.1 1) is compatible with this symmetry, the Fourier coefficient satisfies 
A - n , - m ( t )  = -An,m(t). This implies that A , ,  is pure imaginary. 

Because of (2.12), the Fourier coefficients A , ,  satisfy the initial conditions 

(2.14) i x ~ , ~ ( O )  = -x0,-1(O) = -+, 

Zl,o(O) = -Z-l,o(O) = -$zli, 

Xn,,(O) = Yn,p(O) = Z,,(O) = 0, otherwise. 

Equations governing the evolution of the Fourier coefficients A , ,  are obtained by 
substituting (2.13) into (2.11). 

In the following we put A; = A1 + a and A; = A2 + P, so that (2.13) gives 

X=R(A1,;12,t)-R(n;,n;,t)= -1 + (0) (::) 
and 

a 
an; w = -R(Ai&,t) = 

where 

From (2.19, we have 

IXI-’ = (a2 + p2)-3/2(1 - 2 ~ 1 +  s~)-’/~, 

(2.15) 

(2.16) 

(2.174 

(2.17b) 

(2.18) 

in which 
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-sz - Ps2z + sys2z - szs2y 
as22 + S Z S Z X  - s X S ~ Z  x (1 - 2S1 + (2.19) 

--a + sx - as2y + ps2x + sxs2y - sys2x ) 
Let e = max(rl,e2) << 1. Because of initial condition (2.14), we assume that 

A , ,  = O(e)  and therefore 
s1 = O(e) ,  s, = O(2).  (2.20) 

This assumption is the same in spirit as the one used by Moore (1979), who showed 
the validity of assumption (2.20) in the two-dimensional case. Under the assumption 
(2.20), we can expand IXI-3 and therefore the integrand in (2.19) in powers of e. 
Equating the coefficients of exp[i(nAl + 6m&)] then yields the governing equation for 
A , ,  (Xqm, Yn,m,Zqm) in the following form: 

(2.21) 
d 
dt -An,m = L A , ,  + P ,  

where L is evaluated to be 

O 6nm(n2 + (2.22) 
O n2(n2 + 62mz)-1 /2  

= 5 I (  ( n 2  + 62m2)1/2 : 0 0 

and P is expressed, in a symbolic notation, as 

(2.23) 

in which 

(2.24) 
sum with respect to n l , . - . , n K , r n l , . - . , r n K ,  EE ( satisfying 

{n,rn} n i + n 2 + . . . + n ~ = n  r n l + m 2 + . . . + m ~  = m  

and { A } ( K )  indicates terms of degree K in A, , . f  

Fourier modes 
In (2.23) each element of the vector P contains an infinite series of products of the 

and the coefficient of each product is in general of the form, 

k g'"(R, 8) G = p.v. 1 d8 lm dRcosj 8 sin 8 Ri+l , (2.25) 

where 

p.v. 1'" d8 dR = lim 1'" de 1" dR, 
E'O 

i, j and k are certain positive integers satisfying i + j + k =odd number, and 

t A copy of pages giving the algebraic details is available on request from either the authors or 
the JFM Editorial Office. 
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g(')(R, 9) = (1 - exp iR(n1 cos 9 + 6ml sin 9) }  * . * 

x { 1 - exp iR(ni cos 9 + 6mi sin I3)>, (2.26) 

where (111, ml), . . . , (ni, mi) stand for interacting wavenumbers. 
Since the evaluation of integrals of type (2.25) plays a key role in writing down 

the equations for the evolution of A , , ,  we briefly describe how to evaluate G. By 
repeating the partial integrations with respect to R and noting i + j + k =odd number, 
it is shown that 

(2.27) 
1 00 

G = 1p.v. [ d9 1 dR cosj 8 sink 8- (L) g(')(R, 13). 
i! R dR 

Thus the evaluation of G can be reduced to 

1 dRcosJ 9 sink 9- 
i! R 

I = Lp.v. 1 d9 

that of integrals of the form 

(A) exp(iR(ncos9 + dmsing)}. 
i 

Since 

I is expressed as 
00 

I = 6p.v. 1 d9 irn dRcosJ 9 sink 9 exp(ip(9 + n)} 
l !  

p=-00 

where 
a = (n2 + 62m2)1/2, exp{in} = 6m/a + in/a, 

and Jp  is a Bessel function of the first kind. Using dJ,(R)/dR = (1/2)(Jp-1(R) - 
Jp+l (R)} repeatedly, we have 

and therefore 

where (i) is the Binomial coefficient and we have put z = Ra. When p = i - 21, the 

integrand diverges at z = 0. In order to evaluate the principal value of the integral, 
we need to estimate the following integral with respect to 9 :  

211 

c ( p )  = 1 cod 9 sink 9ei@d9. (2.28) 
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It can be readily seen that if j + k + p is an odd number or if \pl > j + k ,  c(p) is 
equal to zero. Since i + j + k - 21 is an odd number as well as i + j + k ,  c(i - 21) = 0 
and therefore the principal value is equal to zero when p = i - 21. In addition, c(p) is 
non-zero only if p is every other integer from - ( j  + k )  to j + k and for such values 
of p, ( p  - i + 21) is an odd number. Noting this fact and using the recursive relations 
among the Bessel functions, and 

J-n(z) = (-1)"Jn(ZL i* Jn(z)dz = 1, 

for positive integer n, we have 

Jp-i+z/(z) - 1 - 
z p - i + 21' 

Consequently, we have 

It is rather straightforward to write down the explicit form of (2.23) by using the 
above evaluation. However the equations are quite lengthy and we omit here writing 
them in order to save space.? 

3. Numerical integration of the truncated equations 

tional to Z[,X$, = O(eF'$'). This suggests that 
From the conditions (2.14) and (2.20), the dominant term in P is initially propor- 

for t = O( 1). 
A tempting way to simplify (2.21) is therefore to truncate the equations by discarding 

terms of order less than a certain order, say @, where M is an appropriate integer. 
The evolution equations can be then reduced to 3 x n M  ordinary differential equations 
for the 3 x n~ Fourier coefficients {Xp,q, Y,,,,Z,,,}, where n M  is the number of pairs 
of integers ( ( p ,  4)) such that Jp1 + (Ine2/1nq)lq) < M .  

For the sake of simplicity, we put 6 = a / b  = 1 and el = e2(= e) throughout this 
section. The truncated set therefore consists of a set of ordinary differential equations 
for the Fourier coefficients {X,,,, Yp,4,Zp,q}, where p and q are integers satisfying 
IpI + 141 6 M ,  and retains only terms whose order is greater than or equal to eM. 
Because of the symmetry condition A-,,,+(t) = -AnF(t),  the number of the equations 
can be reduced to 3M(M + 1). 

Since the number of the terms on the right-hand side of the truncated equations 
increases in proportion to M ! ,  it is out of question to treat the equations only by 
hand. We therefore used the algebraic manipulation language Mathematicu on a 
SUN Spark Station 2. The process of the construction of the truncated equations can 
be divided roughly into two steps. First, we make a list of all possible interactions. 

t A copy of pages giving the equations and the related algebraic details is available on request 
from either the authors or the JFM Editorial Office. 
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FIGURE 1. A plot of lnlXn,o(t)l us. Inn at times t = 2.0,4.0,6.0,8.0,10.0, showing the behaviour of the 
numerical solution of the truncated set in the case el = €2 = 0.001. The thin straight line has slope 
-2.5. 

Second, we evaluate integral coefficients for each interaction.? It proved possible to 
work with M as large as 6 and the truncated set with M = 6 has about 7 x lo4 terms. 

In order to determine the singularity in the shape of vortex sheet in three- 
dimensional flow, we need to know the asymptotic behaviour of the Fourier co- 
efficients A,,, for large n and m. However, as mentioned above, the number of terms 
to be treated increases so rapidly with M that the manageable magnitude of M ,  i.e. 
In1 + Iml, is quite limited in actual computation (In1 + Iml < 6 in our computation). It 
is therefore fair to regard the results obtained here only as suggestive regarding the 
asymptotic behaviour for large n and m. 

The truncated equations with initial condition (2.14) were integrated numerically 
using the fourth-order Runge-Kutta method. In the run reported below, we set 
E = 0.001 and At = 0.01. 

Figure 1 shows the n-dependence of streamwise Fourier coefficient X,,O at t = 2.0, 
4.0, 6.0, 8.0, 10.0. It suggests that, for t < 10, the Fourier coefficient X,,O decays 
exponentially with respect to n, but, at t = 10.0, it decays only algebraically like n-OL 
with CI = 2.5. Fourier coefficient Z,,O behaves in the same way (not plotted here). This 
behaviour suggests that the sum 

,=-a 

loses analyticity at t = 10.0. 
In the two-dimensional case (no spanwise disturbances, i.e. €2 = 0), Moore (1979) 

showed analytically that the singularity time t, is given by (1.5) and at t = t ,  the 
Fourier coefficient A,  of the disturbance behaves like nP5l2 for large n. For c1 = 0.001, 
(1.5) gives t ,  = 9.986. The singularity time t, and the behaviour of An,O at t = t, are 
thus in good agreement with Moore’s two-dimensional analysis. These facts suggest 
that the behaviour of A,,o is mainly determined by the two-dimensional dynamics of 
the vortex sheet provided that the amplitude of disturbance is sufficiently small. 

Figure 2 shows the n-dependence of X,,O and X , 1  at t = 10.3, at which the curve 

t A copy of pages giving the technical details of these steps is available on request from either 
the authors or the JFM Editorial Office. 
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7 -10 1-w .............................. ........ 

& Slope = -2.5 
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m = 3  

................... -0.- .............. .......... 
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In n 
F'ICURE 2. A plot of lnlXn,ml us. Inn at t = 10.3 by the numerical solution of the truncated set in the 
case €1 = €2 = 0.001 for m = 0,1,2 and 3 (dots with broken lines). Numerical values for Xn,o and 
Xn,l are compared with the asymptotic equations (6.3) (upper solid line) and (6.4) (lower solid line), 
respectively. The thin straight lines have the indicated slopes. 

lnlXn,o( us. Inn fits best to a straight line. In the figure, Xn,2 and Xn,3 are also plotted. 
It can be observed that Xfl,l decays like n-'.', while Xn,0 decays like n-2.5. This fact 
suggests that the sum 

00 c Ai?,+_l e x P W l  +_ Wl (3.3) 
n=-m 

loses analyticity at t = 10.3. Similar behaviour of An,O and A , 1  will be also obtained 
by asymptotic analysis in the next section. 

4. The asymptotic behaviour of the Fourier coefficients 

ordering as in Moore (1979) : 
In this section we simplify the full system (2.21) by introducing the following 

. . .  . . . .  A,, = c l / n l e Z l m l ~ ~ ~  + e l ln l+2e21ml~(2P)  n,m + + ellnlc21ml+2~(0,2) n,m + (4- 1)  

Substituting this ordering into (2.21) yields an evolution equation for At!.  The 
number of terms in the resulting equation is finite, in contrast to (2.21). Retaining 
only the leading-order terms, we can obtain a closed set of equations for {AFL} in 
the form 

where P(O) may be written, in a symbolic notation, as 

in which 
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and stands for the terms of degree K in A;;. The reduced equation is linear 
in A:$, and the forcing term P(O) for Ari,(n,m ,- > 0) can be expressed in terms of 
A t :  w h e r e t h e p a n d q s a t i s f y O < . p < n , O < & q < m a n d O < p t q < n + m .  In 
principle, the set of reduced equations can be solved recursively from small n and 
m. In practice, it is however not easy to solve the equations for n and m that are 
sufficiently large to derive the asymptotic behaviour of A f i m .  

The results obtained in 93 suggest that the singularity develops at a time of 
Oh: ' ) .  It is therefore of interest to consider the simplification of the equations. For 

XTil ,- = T(i/32)6Ct2 sinh i t ,  
Y:,:] = (i/32)S2(1 + 62)-1'2{(-Ct2 + 4t - 8C) cosh i t  + (4Ct - 8) sinh i t  + 8C}, 

Zf!!l = f(i/32)6(1 + 62)1/2Ct2 cosh i t ,  
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where 

so that 

2 -1/2 C = 1 - ( 1 + 6 )  , 

for n > 0 and m 2 0. It can be shown inductively that this time dependence 
is consistent with (4.2) under the initial condition (2.14). Estimation of PCo) in 
(4.2) shows that is of order ent/2tn-K+2m. Because entl2 is a solution of the 
homogeneous part of the equation for ArL,, the term yields a contribution 
of order enf/2tn-K+2m+1 to the solution. Thus the terms quadratic in P(') yields the 
dominant contributions of order ent/2tn+2m-1 to A(') at large t. 

Note that (4.1) and (4.5) give 

Xn,+(m+l)/Xn,*m = 0 ( f 2 t 2 ) ,  (4.6) 

for large t and small e = max(eI, 4, and similar expressions for Y and Z .  Since the 
time t under consideration is O(lnq1), (4.6) implies that when e2 is small enough, the 
Fourier coefficients for small rn are important. In the following, we therefore consider 
the behaviour of A:; and A:i, at large t. 

Since A:! does not interact with spanwise modes at order O($'),  the equation for 
A t i  can be reduced to (1.4) that is derived from the two-dimensional vortex sheet 
equation (the Birkhoff-Rott equation). Hence, it is clear that the analysis of A$ 
would yield the same results as in Moore (1979). However, in order to proceed to 
the analysis of A:i1,  it is convenient to analyse Afi  on the basis of (4.2) rather than 
(1.4). We therefork- briefly review here the analysis based on (4.2) before proceeding 
to the analysis of A r i l .  

Retaining only theterms that yield the leading-order contribution for large t to the 
solution gives for n 2 1, 

( 4 . 7 ~ )  
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(4.7b) 

(4.7c) 

where the sum is zero when n < 1. Note that the right-hand side of the equation 
does not include Y(O). Substitution of (4.5) into (4.7~-c) gives recursive relations for 

= (0) b(0) (0) 
n,O - (an,O? n,o, Cn,o) as 

(4.8) - c(o) - 1 b(0) - 0 

1 n-l 

l,o - 1,o - , l,o - ’ 
and, for n 2 2, 

(4.9) n,O - - Cn,o (0) - - ~ C k(n - k ) c f , & @  b$ = 0. 

The relations (4.8) and (4.9) are equivalent to (3.4) and (3.5) in Moore (1979), and we 
have for large n and t, 

k=l  2(n - 1) 

The leading term may be rearranged to give 

Note that (4.11) is valid only for n >> 1 and t >> 1 and n << t (see Moore 1979). Thus 
the exponential decay with respect to n of the coefficients fails at a time t, defined 
by 1 + kt + 1nielt = 0. The singularity associated with An,o can be obtained by the 
following approximate summation of the Fourier coefficients : 

where cp stands for less singular terms (and where a typographical error in Moore 
(1979) has been corrected). The singularity appears at I1 = (2k + l)n with k being an 
integer. Let dl = l1 - (2k + 1)n. Then for small IAlI, (4.12) gives 

Now let us proceed to the analysis of u t i l  = ( a t ~ l , b t ~ l , c t i l ) .  In the same way as 
for we have for n 2 0, 
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(4.13b) 

n- 1 +c { ( n  - k) [ (n  - k)' + 62]1/2 + klkl - n(n2 + 62)1i2} X 2 k , k l ~ f J  

- 2 5 { (n  - k)[(n - k)2 + 82]1/2 + k(kl - n(n2 + S2)1/2} Z ~ ~ Z ~ , , , .  

k = l  

i 

k = l  

(4.1 3c) 

Substituting (4.5) into (4.13a-c) yields the relations for n 2 1, 

k(n - k)2(n2 + 8 y 2  

[(n - k)2 + 621~ '~  
2n(n + l)cti l  = { n2k - (n2 - nk + k2)(n2 + 62)1/2 + 

(4.144 

(4.14b) 

(4.14~) 

Since a$ are known, btkl  and c t i l  for n 2 1 can be obtained from (4.14a-c) 

equation for Afi , .  It is read& seen that all of ( a ~ i l , b t i l , c ~ i l )  are real numbers. 
The numerical solutions of (4 .14~)  are plotted for some aspect ratios 6 = 0.1,1,10 in 
figure 3. It can be observed in the figure that c r i l  9- behaves like ennP3/' for large n 
independently of 6, while c$ behaves like enn-5/2. It is seen from (4.14b) and (4.14~) 

From &ese results and (4.5), we have for large t and n(>> 6), 

with O,fl - - b(O) o,rtl = 0 and cf i l  = 1, which is a consequence of the solution of the 

that a,+1 (0) and bFil then behave like enn-3/2 and enn-5/2, respectively, for large n(> 6). 

(4.15) 

where 
f(t) 5 texp[n(l + i t  + In$~lt)], 

and Ca is a constant depending only on the aspect ratio 6. The above results are 
consistent with those obtained in 93. 

When 6 is small, Ca can be estimated as shown below. (Note that small value of 6 
corresponds to large wavelength of the initial disturbance in the spanwise direction.) 
Putting n = 1 in (4.14a) gives 

(4.16) 
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0 0.5 1.0 1.5 2.0 

log,, n 
FIGURE 3. A plot of loglO(c,,~le-"l us. loglon by the numerical solutions of (4.14~) for the aspect 
ratio 6 = 0.1,1 and 10 (broken lines). The values of loglo)c,,Oe-"l are also plotted(so1id line). The 
thin straight lines have the indicated slopes. 

where a(o) - - co+l (O) - - 1. Since a t i  = O(So) for k 2 1, (4.14~) and (4.16) imply that cTil 
>- 

are O(S2) for n' 1. By retaining terms of O(S2) in (4.14a), we have, for n 2 2, 
n-I 

(n + l)cfk, = k(n - k ) c ~ ~ k , * l a ~ i .  (4.17) 
k = l  

Let g(x)  and h(x) be functions defined by 

(4.18a) 
(4.18b) 

g(x) U T ~ X  + a2,ox (0) 2 + a3,ox (0) 3 + * . . , 
h ( x ) S c r i 1 ~ + ~ 2 + 1 x  (0) 2 + ~ 3 + 1 ~  (0) 3 +.... 

>- >- 

Then (4.17) is equivalent to 

(4.19) 

The function g(x) is the same one as used in Moore (1979), and may be written as 
1 2  g(x) = u(x)  - zu (x), x = ue-'. 

Since u(x)  is a two-valued function with a singularity at x = e-', g(x) is also singular 
at x = e-l and can be expanded near the singularity as 

g(x) = 4 - y + f$y3/2 - 5 g Y  + O( Y5/2), 

where y = 1 -ex. Note that a$ - (27~)-'/~e"n-~/~ in (4.10) is determined from the 
dominant singular term (2$/3)(1 - ex)3/2 in g(x). 

Equation (4.19) can be rewritten in terms of u as 

(0) d 
-(uh) = 2c, ,- +lue-u, du 

and integrated to give 
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The function h(x) is also singular at x = e-l and can be expanded as 
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near y = 0. The dominant singular behaviour of h is given by 2 c ~ ~ , $ ( l  ,- - 3/e) x 

(1  - Hence c r i 1  >- behaves like 

(4.20) 

where we have used the binomial theorem. The approximation leading to (4.20) is 
only valid if 6 << 1; then, from ( 4 4 ,  (4.16) and (4.20), we have for large n and t, 

Making the comparison between (4.15) and (4.21), we have 

c*= ( y 2 ( ; - 1 )  (-;), (4.22) 

provided that 6 is small. 

5. The evolution of spanwise disturbance 
All of the eigenvalues of the linear matrix L in (2.22) are zero when n = 0. The 

Integration of A t ;  for some small m suggests that if the initial condition is given by 

mode A::; does not therefore grow exponentially in t, in contrast to Aci and An+1. (0) 

xgl(o) = 0 , YJ,Y)(O) = Y(p1(O)' # 0 , ZG)(O) = Z~L,(O)* # 0, 

,- 

A ~ ~ J O )  ,- = (o,o,o), for m > I, 
where an asterisk denotes complex conjugate, then ArA for m 2 2 remains zero for 
t > 0. This suggests that A t ;  can grow only if X&(O) # 0. The initial disturbance 
(2.14) corresponds to this case. This is another reason why we chose (2.14). Taking 
account of this fact, we shall consider in the following the evolution of a spanwise 
disturbance subject to the initial condition ( X t j ( 0 )  = -Xfll(0) = -ii). 

We have seen in $4 that since A$ does not interact with spanwise modes at O(er'), 

the analysis of A$ is equivalent to that of Aho) whose equation is derived from the 
two-dimensional vortex sheet equation. Similarly since A t ;  does not interact with 
streamwise modes at O ( E ~ ' ) ,  the analysis of A t ;  can be made through a reduced 
equation which has only one independent variable (except time) such as the Birkhoff- 
Rott equation. Here we derive the reduced equation which describes the evolution 
of a spanwise disturbance and determines the asymptotic behaviour of the spanwise 
mode. 

Let the vortex sheet be expressed in the form 

w 1 , 2 2 ,  t )  = (21 + 4 2 2 ,  t ) ,  y(22, t ) ,  4h2, t)) ,  (5.1) 

and y(h1) in (2.4) be constant, say yo, then W = yodR/8A2 does not depend on h1. By 
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putting A; = A1 + a, x = x(&, t), x’ = x(A;, t) and so on, and 

and noting 
2 

da = - B2 ’ 
da=O, 1 1: {(-a + A)2 + B2}3/2 1: {(-a + A)2 + B2}3/2 

for any constants A and B # 0, we may rewrite (2.11) as 

In terms of [ = [(&, t) = y + iz, this may be also written as 

a 

and 

(5.3) 

where [’ = (‘(A;, t). Let 8 and p be defined by ~ ( p ,  t) E (‘(Az, t) - [(A2 + p, t) s re”. 
Then it is readily seen that the integral in (5.3) can be reduce to an integral of 0 with 
respect to P, and is equal to zero when Arg[yl(P,t)/V(-P,t)] 3 n as p -+ 00. The 
vortex sheet whose initial shape is given by 

keeps the integral in (5.3) at zero and does not change position in the streamwise 
(x) direction. In the spanwise (y) direction, the sheet is 2n/&periodic in A2 (byo/U- 
periodic in physical space), and it can therefore be expanded in the Fourier series 
such as 

00 

(5.6) (‘(12, t) = A2 + A[m](t)eismA2. 
m=--a) 

Substituting (5.6) and A; = A2 + p into (5.4) gives 

I x { l + B + B i + . . .  s s2 , 
(5.7) 
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Ca 

In order to simplify the notation, we put ? = at, a[m](?) = 6A[m](t) and $2 6 ~ 2 ,  
and we shall hereafter omit the hats up to (5.18). Equating coefficients of eiSmA2 gives 
the following equation for A [m] ( t )  : 

A [ m  - 1]J(m) + A[m + l]K(m) + . . . €2 

dt 471i 
= -- { dA[-m]' 

where 

J(m1,. . . , mk) = p.v. ei8( 1 - eimi8) . . . (1 - eimk8)P-(k+1)dp 

e-i8( 1 - eim18) . . . (1 - e'mkb)p-(k+I)dp c K(ml , .  * . , mk) = p.v. 

It may be interesting to note that (5.8) is the same as (2.2) in Meiron et al. (1982) 
except that the dominant I-term in their equation is absent from (5.8). By introducing 
the ordering A[m] = O($') and its associated expansion 

A[rn] = .1"A("[m] + '~l+2A(2)[m] + . . . , (5.9) 

we divide (5.8) into subsystems for A(')[m], . . a ,  as in 94. Regarding the 
subsystem for A(')[m](m > 0), only the sums involving the integral J(m1, m2,. * . , mk) 

for ml, m2, .  . + ,  mk > 0 contribute to the leading order. Since all the arguments of J 
are positive it can be evaluated by residues: 

~ ( m ~ ,  m2,. . . , mk) = ni(-i)kmlm2 . . * mk. 

Thus we have 

(5.10~) 

(5 .  lob) 

where rn > 1 and we have used A[-m] = -A[m]. Note that (5.10b) is also obtained 
by taking the limit 1/6 -+ 0 in (4.2). 
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The solution for (5.10a,b) can be written as 

A(') [m] = ( t )  {a(') [m] + a(') [m] t-' + . *  . + a("') [m] t-"}. 

a(')[l] = 1, 

(-iIkml * . . mka(')[mll . . . a(')[mk] + . . . 

Substitution of (5.11) into (5.10a,b) gives 

ma(') [m] = (-i)(m - 1 )a(') [m - 11 + . * . 
C + 

+(-i)"-'(a(') [I])"-'. 
ml+-+mk=m-l 
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(5.11) 

(5.12~) 

(5.12b) 

Let q(x) be a complex-valued generating function of real variable x defined by 
q(x) = a(')[l]x + a(0)[2]x2 + * * * . (5.13) 

q'(0) = 1, (5.14) 
Then (5.12a,b) are equivalent to 

q'(x)* - 1 = -ixq'(x){ 1 + (-ixq'(x)) + (-ixq'(x))' + . * .} 
- -ixq'( x) - 

1 + ixq'(x)' 
(5.15) 

where a prime denotes the differentiation with respect to x and we have assumed that 
lixq'(x)( < 1. Equation (5.15) is rearranged to give 

4'(x)' - 1 = -ixq'(x)q'(x)*. 
Since the right-hand side of the above equation is pure imaginary, we have 

P b )  = 4 1  + P W 2 h  

1 - (1 - 4 x y  

where ip(x) = q'(x) - 1. The solution which satisfies condition (5.14), i.e. p ( 0 )  = 0, is 

2x P ( X )  = > 

and its integration with respect to x gives 

in which the integration constant has been determined to satisfy q(0) = 0. q(x) 
has a singularity at x = and the dominant singular behaviour of q is given by 
(i/6)(1 - 4 ~ ' ) ~ / ~ .  It follows that a(')[m] behaves as 

1 
(5.17) ac0)[2k] N i-k-5/24k, a(')[2k - 13 - 0 as k + 00. 

8* 
Taking into account (5.9) and (5.11), we have for large k and t 

(5.18) 

Equation (5.18) implies that a singularity appears in the spanwise (y) direction at 

(5.19) 
2 

?span) - 
t c  $2' 
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and, at that instant, the Fourier coefficient a[,] is O( 1) and behaves like m-5/2. From 
(5.6), (5.9) and (5.18), we have, at 2 = ??pan), 

21612 3/2 [ - A2 = (i/6){( 1 - e2i6a2)3/2 - (1 - e- ) } + cp, (5.20) 

where cp stands for less singular terms. The singularity appears at A2 = k n / 6  where k 
is an integer. For small 11121, where 112 = A2 - k n / 6 ,  (5.20) gives 

Note that only the y-component is singular at ( 1 2  = 0. 

6. Discussion and conclusions 
In this paper, we have considered the three-dimensional evolution of a periodic 

perturbation in both the streamwise and spanwise directions applied initially to a 
flat and uniform vortex sheet. In order to make the problem analytically tractable, 
we have assumed the amplitude of disturbance to be small but finite. The double 
periodic shape of the sheet at t > 0 is expressed in a Fourier series as a function 
of two Lagrangian parameters. The evolution equations for the Fourier coefficients 
A , m ( t )  = (Xn,m, Yn,m,Zn,m) are derived on the basis of a Lagrangian representation 
of the motion of the vortex sheet. The subscripts n and m of A , , ( t )  denote the 
wavenumbers in the streamwise and spanwise directions, respectively. 

The asymptotic analyses of 94 for the behaviour of the Fourier coefficients at large 
t show that AR0 and An,+l behave like 

and 

Xn,0, Zn,0, Y,,+I cc n-5/2 and Xn,+l, Zn,+l cc n-3/2 for large n, 

at a time tc(= O(ln(e7')) >> 1) defined by 1 + i tc  + lnielt, = 0, where €1 and €2 are 
the amplitudes of the initial disturbance and where we have assumed the aspect ratio 
6 of the periodic domain of the disturbance to be order unity (see (1.6) and (1.7)). 

The behaviour of An,O and An+l  in (6.1) and (6.2) is in qualitative agreement with 
that of numerical solutions in $3; Figure 2 shows a quantitative comparison between 
the Fourier coefficients Xn,0 and Xql at t = 10.3 obtained in 93 and those obtained by 
substituting €2 = 0.001, t ,  = 10.3 and 6 = 1 into 

(6-3) enX(o) - t,l (0) --n 
1 n,O %,Oe 3 

c;F~x~/  - a~(e~t,)acje-n. (6.4) 
The agreement is fair. 

The leading-order asymptotic forms of X-n,o and Zn,0 for large n at t = t, are given 
by 

(6.5) 
(see (4.11)). Similarly, provided that 6 << 1, the forms of Xn,+l, Yn,+l and Zn,+l for 
large n at t = tc are given by 

(6.6) 

x , , ~  = z , ~  = i(2n)-1/2(-i)"t,1n-5/2 

x ~ , + ~  = z , + ~  = r + i ( - 1 ) " ~ ~ 6 ( e ~ t , ) n - ~ / ~ ,  
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where Cs = (2/7~)'/~((3/e) - 1) (-id2) (see (4.15) and (4.22)). Small 6 corresponds to 
large wavelength of the initial disturbance in the spanwise direction. 

Throughout the analysis in $4, we assume (1.7), i.e. 0 < €1 << 1 and €2 = O(el), 
from which we have t, = O(lne,') >> 1, so that 

(6.8) 

It can be seen from (6.1) that the ordering A , ,  = O ( e ~ ' $ ) ,  on which (4.1) is based, 
fails at the time t,. In the two-dimensional case, as noted by Moore (1979), the 
simplified equation (1.4) still remains valid at the critical time t, provided that O(t;') 
is small enough, because it retains the linear term that is dominant in the full equation 
at that time. This discussion can also be applied to the present case, because (4.2) 
retains the linear term and the Fourier coefficients are small enough at t = t,. More 
precisely, we have neglected nonlinear terms of order tc2 in the equation for An,O 
and those of order c2(= c2tc x t;') in the equation for A,,+' at the critical time. In 
this context, we may regard the results obtained in 94 as the approximations valid 
when (6.8) is guaranteed. Shelley (1992) presented an example which shows that 
when there is no linear term, in contrast to the present problem, the application of 
Moore's method of expansion may result in an incorrect prediction of the form of 
the singularity. 

From (6.1) and (6.2), it may be expected that IA,,+1\ is larger than IA,,OI for 
n >> O((e2t:)-I). This range of n, however, is beyond our approximation because 
we have neglected the terms ut i  and uzLl in (4.5). Since a$ in (4.10) behaves 
like enn-3/2 (Moore 1979), (4.11) is valid only for 1 << n << t. Moreover small but 
finite €2 << 1 implies t, << (e2tf)-', so that IAfl,+lI << IA,,oI for 1 << n << t,. Moore 
(1979) showed that the non-uniformity of (4.11) with respect to n arises from a factor 
exp(-n/t). Removing this non-uniformity by introducing a strained time, he showed 
that the singularity is of the same form, i.e. but occurs at a slightly later 
time. Application of his method to the equation for A$ would lead to the same 
improvement as in Moore (1979) because the equation for A$ is equivalent to (1.4), 
i.e. the equation analysed by Moore. We cannot be certain regarding A f i l  because 
we have no definite information on u t i l  at present. All we can say is that, for the 
case of a small but finite disturbance, at the leading order of the approximation, the 
Fourier coefficients A , o  and An,+1 behave as in (6.2) simultaneously. 

The asymptotic analysis for Ao,, in $5 leads to the result embodied in (5.18). In 
terms of the notation in $4, it can be interpreted as the y-component of Aosn which 
behaves like 

€2tC << t;l << 1. 

for large t and k. This implies that a singularity appears at a critical time $pa") = 

2/(62e2). 
When 6 = 0(1), it is seen from 0 < €1 << 1 and €2 = O(c1) that O(ry ' )  >> O(lnc;'), 

i.e. >> t,. The singularity associated with (6.9) therefore makes sense only for 
the case 1/6 -+ 0. In addition, since A[m] in $5 becomes of 0(1) at t = and we 
have neglected nonlinear terms of O(1) in the equation for A[m] at that time, there is 
no guarantee the validity of the asymptotic analysis for Ao,, at t = @pan). However, 
it is expected that (6.9) well describes the behaviour of the spanwise mode at large t, 
for example at t = t, >> 1, because the ordering A[m] = O(&!l) still remains valid at 
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that time. The exponential decay of A[m] with respect to m at t = t ,  suggests that the 
shape of the vortex sheet remains analytic in the spanwise direction at that time. 

Sheet shape near the singularity time 

Substituting (4.1) and (4.5) into (2.13) yields the following expression for the vortex 
sheet: 

m 

x(A1, A2,  t )  fi: 11 - 2t-’ C(~16)”a:i sin n(L1 + n) 
fl=l 

where 6 = btexp(it + 1) and si$ = a$e-”, = a:ile-n, and so on. In deriving 

C(O) = E:ll. Since we have discarded terms of second order in €2 in the above 
expressions, e2 must satisfy 0 < e2 << el << 1, if the expressions are to be used for 
general t. In addition, the time t must be large in (6.10a-c), since we have retained 
only the dO)-term in (4.5). At the singularity time t ,  = O(ln(6;’)) at which el6 = 1, 
the expressions can make sense also for 0 < € 2  = O ( E ~ )  << 1 provided that t;’ << 1 
and e2t: << 1, because X,,O and Z,,o are O(t;’) and Xh+l, Yfl,*l and Z,+I  are O(e2tc) in 
agreement with (4.6). Note also that (6.10~-c) are valid only for t >> 1 and 1 < n << t, 
as discussed previously in this section. 

In this subsection, we consider the sheet shape near the singularity time and present 
a few possible interpretations of (6.1Oa-c). 

-(o) - -(o) -(o) = 6:; = -&(o) and (6.10a-c), we have used the relations an,o - c, ,~,  a , ,  n,-1 

n, 1 

Interpretation (a)  

behave like n-3/2 at t,, and each sum in (6.10~-c) with respect to n therefore is 
singular at 11 = (2k + 1)n, where k is an integer. One possible and straightforward 
interpretation compatible with these facts may be to construe that the shape of the 
sheet is singular at 3L1 = (2k + 1 ) ~ .  If this is the case, the singularity is distributed 
along vortex lines given by 

We first note that Lit!, 6‘,0: and n,O behave like n-5/2 at large n, and and 

1 m 

m 

fl=O 5 ( k  = 0 , + 1 , + 2 , - . . ) ,  (6.11) 
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which is obtained by substituting A1 = (2k + 1)n into (6.10~-c). Each of the vortex 
lines is on a plane with the slope 

(6.12) 

This slope depends only on 6. For example, it was obtained numerically from (4.14a,b) 
that 0 = -1.24 x lo3,-17.9 and -0.32 for 6 = 0.1, 1 and 10, respectively. 

Since (6.10~-c) are valid only for 1 < n << t, and IAn,klI << IAn,ol for this range of 
n, we may understand (6.10~-c) to show that the sheet shape at t, is dominated by 
An,0 and the three-dimensional motion results in the same curvature singularity as in 
two dimensions at the leading order of the present approximation. Thus the effect 
of the three-dimensional correction associated with An,+l on the sheet profile may be 
regarded as small. However, it may play a key role in the vector W in (2.4), because 
(6.10~-c) give 

m 

C cos n(Al + n) cos 
n=O 
m 

n=O 
00 

at t = t,, where the second term is due to the effect of three-dimensionality or vortex 
stretching. The length of W represents the vortex stretching and is given by 

m 

1 W I  = 1 - d2e2t, C Ffi sin n(A1+ n) sin 6 1 2  + o ( E ~ ) .  

The fact that I W J  = 1 at 11 = (2k + 1)n implies that there is no stretching in order 
e2tc on the curve given by (6.11). 

n=O 

From (6.13) and (2.5) the vorticity density vector 52 may be written as 

a =  (i) + 

m 

n=O 
m 

t,' c a -$ n cos n(l1 + n) 
n= 1 
m 

n=O 

at t = t,, in which we have retained only the dominant term in each element. The 
amplitude of the vorticity density 101 is then 

00 

I ~ I  = 1 + t,' C Zi$ncos n(A1+ n) + o(tL2). (6.14) 

Equations (6.13) and (6.14) with the above interpretation regarding the singularity 
n=l 
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location suggest that the x- and z-components of W as well as If21 have cusp 
singularities at I1 = (2k + 1)n. Since ii$ can be determined by the dynamics of 
the vortex sheet in two-dimensional flow, it is clear from (6.14) that the singularity 
distribution of the vorticity density is dominated by two-dimensional dynamics, i.e. 
by the concentration of vorticity associated with Kelvin-Helmholtz instability. 

Interpretation (b) 
Interpretations different from (a) are also possible. For example, the following 

interpretation based on the idea of strained coordinates is also compatible with 
(6.10~-c) as well as (6.5)-(6.7). An illustrative example to make the idea clear is 

(6.15) 

where a slight distortion e results in a term proportional to n on the right-hand side. 
This expansion is valid only for e << 1 and n << 6-l. With (6.15) in mind, we rewrite 
(6.10~) as 

sin n(& + e )  - sin nA1 + ne cos nAl as E. + 0, 

(6.16) - (2n)-1/2n2--5/2 and i@ - Csn-3/2 for large n (see (4.10) and (4.15)), we Since 

utilizing (6.15) to (6.16) gives 
have a,,/an,, 4 0 )  4 0 )  - ( 2 ~ ) - ' / ~ C s n  for large n. Let a(n) be defined by na(n) = a:!@;, then 

m 

~ ( 2 1 ,  ~ 2 ,  t )  NN 11 - 2t-' C(E.,e)nsi:/, sinn(A1 + R - :a(n)dezt2 sin 6 ~ 2 ) ,  (6.17) 
n= 1 

where a(n) - (27~)- ' /~Cs for large n. Similarly, we have from (6.10~) 
a, 

z(L~, 12, t )  w -2t-' C ( e l e ) n i i $  sin n { ~ l +  n - $p(n)6e2t2 sin 6221, (6.18) 

where np(n) = E : ! / i i r ;  - (27~)- ' /~Csn for large n and we have neglected a term 
associated with C t l  which is irrelevant to the singularity analysis. Since (1.7) implies 
e2t2 << 1 and t << (e2t2)-', (6.17) and (6.18) can be valid for 1 < n << t ,  in the same 
sense as (6.10~) and (6.10~). 

Since a(n) = p(n) - (2n)-1/2Ca for large n(> 6 = 0(1)), which is justified by (4.14b) 
and (4.15), (6.17) and (6.18) are compatible with the interpretation that the singularity 
of the same form as the two-dimensional curvature singularity appears at t, and it is 
distributed along the curves given by 

A~ = (2k + 1)n + + ~ ) - ' / ~ ~ s 6 e 2 t :  sin6i2, (6.19) 

where k = 0, f l ,  f 2 ,  * . .. In contrast to the interpretation (a),  these singularity curves 
are then different from vortex lines satisfying A1 =constant (these cannot occur in two 
dimensions). Equation (6.19) means that the Il(streamwise coordinate)-value of the 
singularity curves varies with &(spanwise coordinate) by an amount of O ( q t ; ) .  If this 
is the reason for the n-3/2 behaviour of An,+', then it is suggested from (6.17) and (6.18) 
that at time t,, An,+2 = O(ett2) K n-ll2 for large n, An,+3 = O(e2t:) cc n1/2 for large n, 
and so on. The data in figure 2 seem to be too limited to check this behaviour. Moore 
(1979) showed rigorously that the non-uniformity in the perturbation expansion for 

n= 1 
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large n results in the n-’l2 behaviour of si$ for large n, and such a non-uniformity 
can be removed by introducing the strained time. The ordering of Fourier coefficients 
at t,, i.e., An,+2 = O(@) and An,+3 = O(eit2) at t ,  is consistent with (4.5). 

It is shown from (6.17) and (6.18) that at time t,, 
W 

W, = d2e2tC c sit! cos n(A1 + n - $a(n)6e2t: sin6h) cos 6A2 + O(e2), 

W, = d2e2tC Z$ cos n(A1 + n - iP(n)6~2t: sin 612) cos 612 + O(e2) ,  

(6.20) 
n=l 

W 

(6.21) 
n=l 

and 
W 

101 = 1 + t,’ c Sitincos n { i l +  n - +(n)6qt; sin 622) + o(tT2). (6.22) 
n=l 

These with the interpretation based on (6.19) suggest that W,, W, and 10) have cusp 
singularities along the curve defined by (6.19) provided that 6 = O(1). These facts coin- 
cide with those obtained in interpretation (a) except for the location of the singularity. 

By the way, one might consider that the n-3/2 behaviour of An,+l for large n would 
result if the singularity time varies with the spanwise coordinate 1 2 .  (This possibility 
was commented on by a referee.) An expansion similar to 

sin niZl exp(en cos 612) - sin rill + en cos 6A2 sin n1l (6.23) 

which is consistent with A-n,-m = -A, , ,  certainly explains the n-3/2 behaviour of 
A,+1 and leads to this conjecture. However, this possibility can be excluded at the 
leadin -order approximation for the present problem, because (6.23) is incompatible 

evolution equation obtained in $4. 
The main difference between interpretations (a) and (b)  lies in the location of the 

singularity. In interpretation (a), the singularity is distributed along a vortex line, while, 
in interpretation (b),  it is distributed along a curve defined by (6.19) for 6 = 0(1), 
which is not a vortex line. On the other hand, irrespectively of the interpretations, 
the form and the appearance time of the singularity in the three-dimensional motion 
are the same as those in two dimensions at the leading-order approximation for the 
present problem. In both interpretations, it is seen that, reflecting three-dimensionality, 
in contrast to two dimensions where W given by (2.4) is kept constant, x- and z- 
components of W form cusp singularities in three dimensions. 

The full determination of the location as well as the form and the appearance 
time of the singularity would require the full asymptotics of A , ,  for large n and m. 
The results in the present paper are clearly insufficient for the full determination; 
they do not rule out possibilities other than interpretations (a) and (b). It would be 
interesting to investigate numerically the nature of the singularity in three dimensions, 
as in the two-dimensional computation by Krasny( 1986) and Shelley( 1992). It would 
be also interesting to check numerically the &dependence (or independence) of the 
singularity time for various initial conditions. A numerical study in such a direction 
is now under way. 

as E -+ 0, 

with $0) - ai(0) and &o) n,l - - c,,,-~ -(o) which come from the initial condition (2.12) and the 
n,l - n,-1 
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incorporated into the paper, particularly for the ones that have motivated them to 
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